Transformacion De Jordan Wigner 2d Para Sistemas Magneticos Frustrados
Resumen del Libro

En este trabajo analizamos variaciones y aplicaciones de un metodo numerico autoconsistente para estimar el estado fundamental de sistemas de espin 1/2 en dos dimensiones. El mencionado metodo se basa en el uso de la transformacion de Jordan-Wigner sobre una red de espines bidimensional junto con una aproximacion de campo medio multiparametrica que permite resolver el sistema fermionico resultante. En una primer etapa, investigamos redes cuadradas con condiciones de contorno abiertas y analizamos la incidencia de estas condiciones de borde en el estado fundamental del sistema. Luego, una vez establecida la viabilidad del metodo con condiciones abiertas, lo aplicamos en una segunda etapa, sobre una red bidimensional frustrada, obtenida al incorporar enlaces diagonales sobre la red cuadrada original. En esta ultima red observamos al variar el grado de frustracion, una transicion entre la fase de Neel y una fase con magnetizacion nula en el eje preferencial de cuantizacion.